Dehn Filling and Asymptotically Hyperbolic Einstein Manifolds

Mathematics – Differential Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

30 pages, part of author's thesis from SUNY Stony Brook. Updated version, some slight corrections

Scientific paper

In this article, we extend Anderson's higher-dimensional Dehn filling construction to a large class of infinite-volume hyperbolic manifolds. This gives an infinite family of topologically distinct asymptotically hyperbolic Einstein manifolds with the same conformal infinity. The construction involves finding a sequence of approximate solutions to the Einstein equations and then perturbing them to exact ones.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Dehn Filling and Asymptotically Hyperbolic Einstein Manifolds does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Dehn Filling and Asymptotically Hyperbolic Einstein Manifolds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dehn Filling and Asymptotically Hyperbolic Einstein Manifolds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-235485

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.