Physics – Geophysics
Scientific paper
Jan 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008geoji.172....1b&link_type=abstract
Geophysical Journal International, Volume 172, Issue 3, pp. 1-17.
Physics
Geophysics
2
Tomography, Electromagnetic Theory, Hydrogeophysics, Wave Scattering And Diffraction, Wave Propagation
Scientific paper
Crosshole-radar velocity tomography is increasingly being used to characterize the electrical and hydrologic properties of the Earth's near-surface. Because radar methods are sensitive to the water content of geologic materials, velocity tomography is a good proxy for imaging soil water retention in the vadose zone and porosity in the saturated zone. In many near-surface environments, radar velocity varies over a few orders of magnitude. Common velocity tomography applies ray theory that assumes infinite frequency propagation. The ray approximation may induce velocity modelling artefacts and loss of localization. We propose an alternative method for computing velocity tomogram sensitivities using Fresnel volumes based on first-order scattering. The Fresnel volume sensitivities account for the finite-frequency of the crosshole radar signal and model the physics of radar propagation more accurately than the ray theory approximation.
We demonstrate that applying finite-frequency Fresnel volume sensitivities provides improved radar velocity tomograms in low contrast environments. Analysis of the singular value decomposition of the sensitivity matrix demonstrates how the finite-frequency inversion recovers and localizes velocity heterogeneities better than ray theory. The singular value spectrum obtained from the full waveform sensitivities matches well with the Fresnel volume results. Furthermore, these basis functions are smooth and localized because the kernels capture the first order wave propagation effect compared to ray based sensitivity, which is a high frequency approximation. Through forward modelling experiments, we validate the finite-frequency sensitivity for crosshole radar velocity. In the Fresnel volume approach, the traveltime picking is more efficient because the datum is the peak of the first pulse rather than the first arrival, and therefore, data pre-processing is simpler and may be easily automated. The synthetic Fresnel volume inversion results show improvements in the final model and the data fits are better when compared to the ray theoretical inversions.
Buursink Marc L.
Johnson Timothy C.
Knoll Michael D.
Routh Partha S.
No associations
LandOfFree
Crosshole radar velocity tomography with finite-frequency Fresnel volume sensitivities does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Crosshole radar velocity tomography with finite-frequency Fresnel volume sensitivities, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Crosshole radar velocity tomography with finite-frequency Fresnel volume sensitivities will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-754448