Physics
Scientific paper
Sep 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009njph...11i3017s&link_type=abstract
New Journal of Physics, Volume 11, Issue 9, pp. 093017 (2009).
Physics
2
Scientific paper
There is growing evidence that nonlinear time series analysis techniques can be used to successfully characterize, classify, or process signals derived from real-world dynamics even though these are not necessarily deterministic and stationary. In the present study, we proceed in this direction by addressing an important problem our modern society is facing, the automatic classification of digital information. In particular, we address the automatic identification of cover songs, i.e. alternative renditions of a previously recorded musical piece. For this purpose, we here propose a recurrence quantification analysis measure that allows the tracking of potentially curved and disrupted traces in cross recurrence plots (CRPs). We apply this measure to CRPs constructed from the state space representation of musical descriptor time series extracted from the raw audio signal. We show that our method identifies cover songs with a higher accuracy as compared to previously published techniques. Beyond the particular application proposed here, we discuss how our approach can be useful for the characterization of a variety of signals from different scientific disciplines. We study coupled Rössler dynamics with stochastically modulated mean frequencies as one concrete example to illustrate this point.
Andrzejak Ralph G.
Serrà Joan
Serra Xavier
No associations
LandOfFree
Cross recurrence quantification for cover song identification does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Cross recurrence quantification for cover song identification, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cross recurrence quantification for cover song identification will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1074300