Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
1993-04-07
Phys.Rev. D49 (1994) 947-957
Physics
High Energy Physics
High Energy Physics - Theory
harvmac, 27 pages (l mode), 4 figures included with epsf. (Revision: references added.) UCSBTH-93-08
Scientific paper
10.1103/PhysRevD.49.947
One possible fate of information lost to black holes is its preservation in black hole remnants. It is argued that a type of effective field theory describes such remnants (generically referred to as informons). The general structure of such a theory is investigated and the infinite pair production problem is revisited. A toy model for remnants clarifies some of the basic issues; in particular, infinite remnant production is not suppressed simply by the large internal volumes as proposed in cornucopion scenarios. Criteria for avoiding infinite production are stated in terms of couplings in the effective theory. Such instabilities remain a problem barring what would be described in that theory as a strong coupling conspiracy. The relation to euclidean calculations of cornucopion production is sketched, and potential flaws in that analysis are outlined. However, it is quite plausible that pair production of ordinary black holes (e.g. Reissner Nordstrom or others) is suppressed due to strong effective couplings. It also remains an open possibility that a microscopic dynamics can be found yielding an appropriate strongly coupled effective theory of neutral informons without infinite pair production.
No associations
LandOfFree
Constraints on Black Hole Remnants does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Constraints on Black Hole Remnants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Constraints on Black Hole Remnants will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-388206