Physics
Scientific paper
Mar 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009e%26psl.279..282c&link_type=abstract
Earth and Planetary Science Letters, Volume 279, Issue 3-4, p. 282-292.
Physics
3
Scientific paper
We investigate the relationship between changes of the gravity field and the release of the seismic energy at Mt. Etna over a 12-year period (1994-2006), during which the volcano exhibited different eruptive patterns. Over the two sub-periods when intense gravity decreases occur, centered on the upper southeastern sector of the volcano (late-1996 to mid-1999 and late-2000 to mid-2001), the strain release curve displays neat long-term accelerations, with many hypocenters clustered in the volume containing the gravity source. Various evidences suggest that, since 1994 and until the breakout of the 2001 eruption, the eastern flank of Etna remained peripheral to the lines of rise of the magma from the deep storage to the surface. Accordingly, we hypothesize that, rather than being directly associated to the migration of the magma, the joint anomalies we found image phases of higher tensile stress on the upper southeastern sector, associated to increase in the rate of microfracturing along the NNW-SSE fracture zone. Such an increase implies a local density (gravity) decrease, and an increase in the release of seismic energy, thus explaining the correlation we observe. The second period of gravity decrease/strain release increase culminated in the breakout of the 2001 flank eruption, as a pressurized deeper magma accumulation used the inferred zone of increasing microfracturing as a path to the surface. This eruption marks an important modification in the structure of Etna's plumbing system, as also testified by the absence of post-2001 long-term gravity changes and accelerations in the strain release curve and the neat modification of the seismicity and ground deformation patterns. We prove that joint microgravity and seismic studies can allow zones of the medium experiencing an increase in the rate of microfracturing to be identified months to years before a magma batch is conveyed through them to the surface, setting off a lateral eruption.
Carbone Daniele
D'Amico Salvatore
Greco Filippo
Musumeci Carla
No associations
LandOfFree
Comparison between the 1994-2006 seismic and gravity data from Mt. Etna: New insight into the long-term behavior of a complex volcano does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Comparison between the 1994-2006 seismic and gravity data from Mt. Etna: New insight into the long-term behavior of a complex volcano, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Comparison between the 1994-2006 seismic and gravity data from Mt. Etna: New insight into the long-term behavior of a complex volcano will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-973760