Physics
Scientific paper
May 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009georl..3609702f&link_type=abstract
Geophysical Research Letters, Volume 36, Issue 9, CiteID L09702
Physics
6
Global Change: Land/Atmosphere Interactions (1218, 1843, 3322), Global Change: Global Climate Models (3337, 4928), Global Change: Cryospheric Change (0776), Global Change: Climate Dynamics (0429, 3309), Global Change: Atmosphere (0315, 0325)
Scientific paper
Climate change is expected to cause a reduction in the spatial extent of snow cover on land. Recent work suggests that this will exert a local influence on the atmosphere and the hydrology of snow-margin areas through the snow-albedo feedback (SAF) mechanism. A significant fraction of variability among IPCC AR4 general circulation model (GCM) predictions for future summertime climate change over these areas is related to the models' representation of springtime SAF. In this study, we demonstrate a nonlocal influence of SAF on the summertime circulation in the extratropical Northern Hemisphere. Increased land surface warming in models with stronger SAF is associated with large-scale sea-level pressure anomalies over the northern oceans and a poleward intensified subtropical jet. We find that up to 25-30% and, on average, 5-10% of the inter-model spread in projections of the circulation response to climate change is linearly related to SAF strength.
Fletcher Christopher G.
Hall Alex
Kushner Paul J.
Qu Xin
No associations
LandOfFree
Circulation responses to snow albedo feedback in climate change does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Circulation responses to snow albedo feedback in climate change, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Circulation responses to snow albedo feedback in climate change will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-810564