Other
Scientific paper
Mar 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007gecoa..71.1542s&link_type=abstract
Geochimica et Cosmochimica Acta, Volume 71, Issue 6, p. 1542-1552.
Other
4
Scientific paper
Submarine volcanic glasses from the eastern Manus Basin of Papua New Guinea, ranging from basalt to rhyodacite, clarify the geochemical behavior of Cl in arc-type magmas. For the Manus samples, Cl is well correlated with non-volatile highly incompatible trace elements, suggesting it was not highly volatile and discounting significant seawater contamination. The Cl partition coefficient is close to but slightly lower than that of Nb and K2O, a behavior similar to that in mid-ocean ridge basalts (MORB) and ocean island basalts (OIB). The similar incompatibilities of Cl and Nb imply that the Cl/Nb values of the eastern Manus Basin glasses reflect their magma source. For glasses from other west Pacific back-arc basins, Cl/Nb, Ba/Nb, and U/Nb increase towards the subduction trench, indicating increased contribution of a component enriched in Cl, Ba, and U, likely from subduction-released slab fluids. It is estimate that ˜80% of the Cl in the Manus arc-type glasses was added directly from subducted slab-derived fluids. We have also modeled Cl behavior during magma evolution in general. Our results show that the behavior of Cl in magma is strongly influenced by pressure, initial H2O content, and the degree of magmatic fractionation. At early stages of magmatic evolution, for magmas with initial H2O content of <4.0 wt%, Cl is highly incompatible under all pressures. By contrast, for more evolved magmas at moderately high pressure and high H2O contents, considerable amounts of Cl can be extracted from the magma once H2O saturation is reached. Accordingly, Cl is usually highly incompatible in MORB and OIB because of their low H2O contents and relatively low degrees of fractional crystallization. The behavior of Cl in arc magmas is more complicated, ranging from highly incompatible to compatible depending on H2O content and depth of magma chambers. The behavior of Cl in the eastern Manus Basin magmas is consistent with low H2O contents (1.1 1.7 wt%) and evolution at low pressures (<0.1 GPa). Modeling results also indicate that Cl will behave differently in intrusive rocks compared to volcanic rocks because of the different pressures involved. This may have a strong influence on the mechanisms of ore genesis in these two tectonic settings.
Arculus Richard J.
Binns R. A.
Fan Alice C.
Hu Yong-Hui
Kamenetsky Vadim S.
No associations
LandOfFree
Chlorine in submarine volcanic glasses from the eastern manus basin does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Chlorine in submarine volcanic glasses from the eastern manus basin, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chlorine in submarine volcanic glasses from the eastern manus basin will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-861006