Characterizing Pyroxene Reaction Space in Calcium-Aluminum Rich Inclusions: Oxidation During CAI Rim Formation

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

[1028] Geochemistry / Composition Of Meteorites, [1042] Geochemistry / Mineral And Crystal Chemistry

Scientific paper

We define the reaction space that controls changes in pyroxene composition in CAIs and Wark-Lovering (WL) rims in an oxidizing solar nebula. Ti-rich pyroxenes in CAIs record a sub-solar oxygen fugacity (Ti3+/Ti4+~1.5). WL rim pyroxenes in the CAI Leoville 144A have a distinctly lower oxidation state.This difference supports WL rim condensation in an environment of increasing O2(g) and Mg(g) (Simon et al. 2005). We used the following phase components to identify four linearly independent reactions (Thompson 1982): diopside, CaTs (Al2Mg-1Si-1), T3 (Ti3+AlMg-1Si-1), T4 (Ti4+Al2Mg-1Si-2), En (MgCa-1), perovskite, O(g), Mg(g), SiO(g), and Ca(g). Compositional variation in this system is dominated by two reactions. The first is oxidation of Ti3+ via reaction with O and Mg in the gas phase: 1.5 O(g) + Mg(g) → ¼ Di + [Ti4+Mg3/4Ti3+-1Ca-1/4Si-1/2] (1). Pyroxene is produced and En is introduced. The second reaction (2) is perovskite formation. It is observed in the WL rim of Leoville 144A, and experiments confirm that an elevated Ti component converts pyroxene to perovskite(Gupta et al. 1973). MgCa-1 is the third linearly independent reaction (3). They combine to give: ½ Di + x Ca(g)→ x Mg(g)+ Pv + [Mg1/2-xSiTi4+-1Ca-1/2+x](2,3). Unlike (1), pyroxene is consumed in this reaction. The parameter x defines the extent of Mg-Ca exchange. When x > 0.5, WL rim formation occurs in an environment where Mg is volatile and Ca condenses. The reaction space defined by reactions (1) and (2,3) describes the transition from CAI interior to WL rims. WL rim pyroxene Ti contents, [CaTs], and Ca < 1 pfu are all explained in this space. The fourth linearly independent reaction is SiO(g):1/8 Di + ¼ Mg(g)→ ¾ SiO(g) + [Mg3/8Ca1/8Ti4+Ti3+-1Si-1/2](4). Silica reduction forms Ti4+, releasing SiO(g). (4) does not describe the oxidation of Ti3+ in WL rim pyroxene, but (1) - (4) results in En formation directly from the gas phase. This may explain WL rim analyses that have Si contents in excess of those predicted from reactions (1) and (2,3). Simon et al. (2005) EPSL 41, 272-283; Thompson (1982)Rev. Min. 10, 33-52; Gupta et al. (1973) Contr. Mineral. Petrol. 41, 333-344 Reaction space for CAI pyroxene. Pyroxenes plotted using titanium contents.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Characterizing Pyroxene Reaction Space in Calcium-Aluminum Rich Inclusions: Oxidation During CAI Rim Formation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Characterizing Pyroxene Reaction Space in Calcium-Aluminum Rich Inclusions: Oxidation During CAI Rim Formation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Characterizing Pyroxene Reaction Space in Calcium-Aluminum Rich Inclusions: Oxidation During CAI Rim Formation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1767295

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.