Physics – Optics
Scientific paper
2003-08-29
Journal of Quantitative Spectroscopy and Radiative Transfer 70, 627-637 (2001)
Physics
Optics
10 pages, 5 figures
Scientific paper
10.1016/S0022-4073(01)00034-6
Optical trapping, where microscopic particles are trapped and manipulated by light is a powerful and widespread technique, with the single-beam gradient trap (also known as optical tweezers) in use for a large number of biological and other applications. The forces and torques acting on a trapped particle result from the transfer of momentum and angular momentum from the trapping beam to the particle. Despite the apparent simplicity of a laser trap, with a single particle in a single beam, exact calculation of the optical forces and torques acting on particles is difficult. Calculations can be performed using approximate methods, but are only applicable within their ranges of validity, such as for particles much larger than, or much smaller than, the trapping wavelength, and for spherical isotropic particles. This leaves unfortunate gaps, since wavelength-scale particles are of great practical interest because they are readily and strongly trapped and are used to probe interesting microscopic and macroscopic phenomena, and non-spherical or anisotropic particles, biological, crystalline, or other, due to their frequent occurance in nature, and the possibility of rotating such objects or controlling or sensing their orientation. The systematic application of electromagnetic scattering theory can provide a general theory of laser trapping, and render results missing from existing theory. We present here calculations of force and torque on a trapped particle obtained from this theory and discuss the possible applications, including the optical measurement of the force and torque.
Heckenberg Norman R.
Nieminen Timo A.
Rubinsztein-Dunlop Halina
No associations
LandOfFree
Calculation and optical measurement of laser trapping forces on non-spherical particles does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Calculation and optical measurement of laser trapping forces on non-spherical particles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Calculation and optical measurement of laser trapping forces on non-spherical particles will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-258019