Biology – Quantitative Biology – Biomolecules
Scientific paper
Jun 2001
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2001asbio...1..165w&link_type=abstract
Astrobiology, Volume 1, Issue 2, pp. 165-184.
Biology
Quantitative Biology
Biomolecules
9
Biomolecules, Brines, Fluvial Erosion, Mars, Microbes, Salinity, Water
Scientific paper
Water, vital for life, not only maintains the integrity of structural and metabolic biomolecules, it also transports them in solution or colloidal suspension. Any flow of water through a dormant or fossilized microbial community elutes molecules that are potentially recognizable as biomarkers. We hypothesize that the surface seepage channels emanating from crater walls and cliffs in Mars Orbiter Camera images result from fluvial erosion of the regolith as low-temperature hypersaline brines. We propose that, if such flows passed through extensive subsurface catchments containing buried and fossilized remains of microbial communities from the wet Hesperian period of early Mars (~3.5 Ga ago), they would have eluted and concentrated relict biomolecules and delive red them to the surface. Life-supporting low-temperature hypersaline brines in Antarctic desert habitats provide a terrestrial analog for such a scenario. As in the Antarctic, salts would likely have accumulated in water-filled depressions on Mars by seasonal influx and evaporation. Liquid water in the Antarctic cold desert analogs occurs at -80°C in the interstices of shallow hypersaline soils and at -50°C in salt-saturated ponds. Similarly, hypersaline brines on Mars could have freezing points depressed below -50°C. The presence of hypersaline brines on Mars would have extended the amount of time during which life might have evolved. Phototrophic communities are especially important for the search for life because the distinctive structures and longevity of their pigments make excellent biomarkers. The surface seepage channels are therefore not only of geomorphological significance, but also provide potential repositories for biomolecules that could be accessed by landers.
Cabrol Nathalie A.
Grin Edmond A.
Haberle Robert M.
Stoker Carol R.
Wynn-Williams David D.
No associations
LandOfFree
Brines in Seepage Channels as Eluants for Subsurface Relict Biomolecules on Mars? does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Brines in Seepage Channels as Eluants for Subsurface Relict Biomolecules on Mars?, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Brines in Seepage Channels as Eluants for Subsurface Relict Biomolecules on Mars? will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1582289