Branching Law for Axons

Physics – Biological Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

8 pages, 4 figures

Scientific paper

What determines the caliber of axonal branches? We pursue the hypothesis that the axonal caliber has evolved to minimize signal propagation delays, while keeping arbor volume to a minimum. We show that for a general cost function the optimal diameters of mother ($d_0$) and daughter ($d_1$, $d_2$) branches at a bifurcation obey a branching law: $d_{0}^{\nu+2}=d_{1}^{\nu+2} + d_{2}^{\nu+2}$. The derivation relies on the fact that the conduction speed scales with the axon diameter to the power $\nu$ ($\nu=1$ for myelinated axons and $\nu=0.5$ for non-myelinated axons). We test the branching law on the available experimental data and find a reasonable agreement.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Branching Law for Axons does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Branching Law for Axons, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Branching Law for Axons will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-439781

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.