Nonlinear Sciences – Chaotic Dynamics
Scientific paper
1997-10-31
Nonlinear Sciences
Chaotic Dynamics
LaTeX, 19 pages
Scientific paper
10.1088/0951-7715/11/6/010
We derive semiclassical contributions of periodic orbits from a boundary integral equation for three-dimensional billiard systems. We use an iterative method that keeps track of the composition of the stability matrix and the Maslov index as an orbit is traversed. Results are given for isolated periodic orbits and rotationally invariant families of periodic orbits in axially symmetric billiard systems. A practical method for determining the stability matrix and the Maslov index is described.
No associations
LandOfFree
Billiard Systems in Three Dimensions: The Boundary Integral Equation and the Trace Formula does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Billiard Systems in Three Dimensions: The Boundary Integral Equation and the Trace Formula, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Billiard Systems in Three Dimensions: The Boundary Integral Equation and the Trace Formula will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-591297