Physics – Quantum Physics
Scientific paper
2003-06-17
Z. Naturforsch. 58a, 682-690 (2003)
Physics
Quantum Physics
17 pages, 5 tables. Parts of Sec.2 and the appendix have been rewritten to improve the clarity of the presentation
Scientific paper
In the King's Problem, a physicist is asked to prepare a d-state quantum system in any state of her choosing and give it to a king who measures one of (d+1) sets of mutually unbiased observables on it. The physicist is then allowed to make a control measurement on the system, following which the king reveals which set of observables he measured and challenges the physicist to predict correctly all the eigenvalues he found. This paper obtains an upper bound on the physicist's probability of success at this task if she is allowed to make measurements only on the system itself (the "conventional" solution) and not on the system as well as any ancillary systems it may have been coupled to in the preparation phase, as in the perfect solutions proposed recently. An optimal conventional solution, with a success probability of 0.7, is constructed in d = 4; this is to be contrasted with the success probability of 0.902 for the optimal conventional solution in d = 2. The gap between the best conventional solution and the perfect solution grows quite rapidly with increasing d.
No associations
LandOfFree
Best conventional solutions to the King's Problem does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Best conventional solutions to the King's Problem, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Best conventional solutions to the King's Problem will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-51302