Bagger-Lambert theory on an orbifold and its relation to Chern-Simons-matter theories

Physics – High Energy Physics – High Energy Physics - Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

20 pages; v3. major revision, title and abstract changed. to appear in Phys.Rev.D

Scientific paper

10.1103/PhysRevD.81.086006

We consider how to take an orbifold reduction for the multiple M2-brane theory recently proposed by Bagger and Lambert, and discuss its relation to Chern-Simons theories. Starting from the infinite dimensional 3-algebra realized as the Nambu bracket on a 3-torus, we first suggest an orbifolding prescription for various fields. Then we introduce a second truncation, which effectively reduces the internal space to a 2-torus. Eventually one obtains a large-N limit of Chern-Simons gauge theories coupled to matter fields. We consider an abelian orbifold C^4/Z_n, and illustrate how one can arrive at the N=6 supersymmetric theories with gauge groups U(N) x U(N) and Chern-Simons levels (k,-k), as recently constructed by Aharony, Bergman, Jafferis and Maldacena.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Bagger-Lambert theory on an orbifold and its relation to Chern-Simons-matter theories does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Bagger-Lambert theory on an orbifold and its relation to Chern-Simons-matter theories, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bagger-Lambert theory on an orbifold and its relation to Chern-Simons-matter theories will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-687132

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.