Azimuthally Symmetric Theory of Gravitation (I)

Physics – General Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

2 figures, 2 tables, 13 pages. Accepted to MNRAS 2009 December 9. Received 2009 December 9; in original form 2009 September 5:

Scientific paper

doi:10.1111/j.1365-2966.2009.161

From a purely none-general relativistic standpoint, we solve the empty space Poisson equation ($\nabla^{2}\Phi=0$) for an azimuthally symmetric setting, i.e., for a spinning gravitational system like the Sun. We seek the general solution of the form $\Phi=\Phi(r,\theta)$. This general solution is constrained such that in the zeroth order approximation it reduces to Newton's well known inverse square law of gravitation. For this general solution, it is seen that it has implications on the orbits of test bodies in the gravitational field of this spinning body. We show that to second order approximation, this azimuthally symmetric gravitational field is capable of explaining at least two things (1) the observed perihelion shift of solar planets (2) that the mean Earth-Sun distance must be increasing -- this resonates with the observations of two independent groups of astronomers (Krasinsky & Brumberg 2004; Standish 2005) who have measured that the mean Earth-Sun distance must be increasing at a rate of about $7.0\pm0.2 m/cy$ (Standish 2005) to $15.0\pm0.3 m/cy$ (Krasinsky & Brumberg 2004). In-principle, we are able to explain this result as a consequence of loss of orbital angular momentum -- this loss of orbital angular momentum is a direct prediction of the theory. Further, we show that the theory is able to explain at a satisfactory level the observed secular increase Earth Year ($1.70\pm0.05 ms/yr$; Miura et al. 2009}). Furthermore, we show that the theory makes a significant and testable prediction to the effect that the period of the solar spin must be decreasing at a rate of at least $8.00\pm2.00 s/cy$.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Azimuthally Symmetric Theory of Gravitation (I) does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Azimuthally Symmetric Theory of Gravitation (I), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Azimuthally Symmetric Theory of Gravitation (I) will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-306290

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.