Computer Science – Robotics
Scientific paper
Apr 2003
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2003eaeja....14176s&link_type=abstract
EGS - AGU - EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6 - 11 April 2003, abstract #14176
Computer Science
Robotics
Scientific paper
Automation and Robotics (A&R) are currently considered as a key technology for Mars exploration. initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. Kayser-Threde led the study AROMA (Automation &Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals was to define new developments and to maintain the competitiveness of European industry within this field. We present a summary of the A&R study in respect to a particular system: The Autonomous Research Island (ARI). In the Mars exploration scenario initially a robotic outpost system lands at pre-selected sites in order to search for life forms and water and to analyze the surface, geology and atmosphere. A&R systems, i.e. rovers and autonomous instrument packages, perform a number of missions with scientific and technology development objectives on the surface of Mars as part of preparations for a human exploration mission. In the Robotic Outpost Phase ARI is conceived as an automated lander which can perform in-situ analysis. It consists of a service module and a micro-rover system for local investigations. Such a system is already under investigation and development in other TRP activities. The micro-rover system provides local mobility for in-situ scientific investigations at a given landing or deployment site. In the long run ARI supports also human Mars missions. An astronaut crew would travel larger distances in a pressurized rover on Mars. Whenever interesting features on the surface are identified, the crew would interrupt the travel and perform local investigations. In order to save crew time ARI could be deployed by the astronauts to perform time-consuming investigations as for example in-situ geochemistry analysis of rocks/soil. Later, the crew could recover the research island for refurbishment and deployment at another site. In the frame of near-term Mars exploration a dedicated exobiology mission is envisaged. Scientific and technical studies for a facility to detect the evidence of past of present life have been carried out under ESA contract. Mars soil/rock samples are to be analyzed for their morphology, organic and inorganic composition using a suite of scientific instruments. Robotic devices, e.g. for the acquisition, handling and onboard processing of Mars sample material retrieved from different locations, and surface mobility are important elements in a fully automated mission. Necessary robotic elements have been identified in past studies. Their realization can partly be based on heritage of existing space hardware, but will require dedicated development effort.
Bertrand Reinhold
Schulte Wolfgang
von Richter Andreas
No associations
LandOfFree
Automation &robotics for future Mars exploration does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Automation &robotics for future Mars exploration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automation &robotics for future Mars exploration will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-846100