Physics
Scientific paper
Sep 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006soph..237..419q&link_type=abstract
Solar Physics, Volume 237, Issue 2, pp.419-431
Physics
10
Scientific paper
We present an automatic algorithm to detect, characterize, and classify coronal mass ejections (CMEs) in Large Angle Spectrometric Coronagraph (LASCO) C2 and C3 images. The algorithm includes three steps: (1) production running difference images of LASCO C2 and C3; (2) characterization of properties of CMEs such as intensity, height, angular width of span, and speed, and (3) classification of strong, median, and weak CMEs on the basis of CME characterization. In this work, image enhancement, segmentation, and morphological methods are used to detect and characterize CME regions. In addition, Support Vector Machine (SVM) classifiers are incorporated with the CME properties to distinguish strong CMEs from other weak CMEs. The real-time CME detection and classification results are recorded in a database to be available to the public. Comparing the two available CME catalogs, SOHO/LASCO and CACTus CME catalogs, we have achieved accurate and fast detection of strong CMEs and most of weak CMEs.
Jing Ju
Qu Ming
Shih Frank Y.
Wang Haimin
No associations
LandOfFree
Automatic Detection and Classification of Coronal Mass Ejections does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Automatic Detection and Classification of Coronal Mass Ejections, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automatic Detection and Classification of Coronal Mass Ejections will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1099792