Automated identification of neurons and their locations

Physics – Biological Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

38 pages. Formatted for two-sided printing. Supplemental material and software available at http://physics.bu.edu/~ainglis/ANR

Scientific paper

Individual locations of many neuronal cell bodies (>10^4) are needed to enable statistically significant measurements of spatial organization within the brain such as nearest-neighbor and microcolumnarity measurements. In this paper, we introduce an Automated Neuron Recognition Algorithm (ANRA) which obtains the (x,y) location of individual neurons within digitized images of Nissl-stained, 30 micron thick, frozen sections of the cerebral cortex of the Rhesus monkey. Identification of neurons within such Nissl-stained sections is inherently difficult due to the variability in neuron staining, the overlap of neurons, the presence of partial or damaged neurons at tissue surfaces, and the presence of non-neuron objects, such as glial cells, blood vessels, and random artifacts. To overcome these challenges and identify neurons, ANRA applies a combination of image segmentation and machine learning. The steps involve active contour segmentation to find outlines of potential neuron cell bodies followed by artificial neural network training using the segmentation properties (size, optical density, gyration, etc.) to distinguish between neuron and non-neuron segmentations. ANRA positively identifies 86[5]% neurons with 15[8]% error (mean[st.dev.]) on a wide range of Nissl-stained images, whereas semi-automatic methods obtain 80[7]%/17[12]%. A further advantage of ANRA is that it affords an unlimited increase in speed from semi-automatic methods, and is computationally efficient, with the ability to recognize ~100 neurons per minute using a standard personal computer. ANRA is amenable to analysis of huge photo-montages of Nissl-stained tissue, thereby opening the door to fast, efficient and quantitative analysis of vast stores of archival material that exist in laboratories and research collections around the world.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Automated identification of neurons and their locations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Automated identification of neurons and their locations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated identification of neurons and their locations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-660869

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.