Physics – Medical Physics
Scientific paper
2007-07-18
Physics
Medical Physics
4 pages, 2 figures: Proceedings of the Computer Assisted Radiology and Surgery, 21th International Congress and Exhibition, Be
Scientific paper
A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector computed-tomography (CT) images has been developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, consisting in a 3D dot-enhancement filter for nodule detection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The database used in this study consists of 17 low-dose CT scans reconstructed with thin slice thickness (~300 slices/scan). The preliminary results are shown in terms of the FROC analysis reporting a good sensitivity (85% range) for both internal and sub-pleural nodules at an acceptable level of false positive findings (1-9 FP/scan); the sensitivity value remains very high (75% range) even at 1-6 FP/scan
Cascio D.
Cheran S. C.
Chincarini A.
Delogu P.
Fantacci M. E.
No associations
LandOfFree
Automated detection of lung nodules in low-dose computed tomography does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Automated detection of lung nodules in low-dose computed tomography, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated detection of lung nodules in low-dose computed tomography will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-553607