Physics – Optics
Scientific paper
2010-09-03
Physics
Optics
Scientific paper
We study arrays of silver split-ring resonators operating at around 1.5-{\mu}m wavelength coupled to an MBE-grown single 12.7-nm thin InGaAs quantum well separated only 4.8 nm from the wafer surface. The samples are held at liquid-helium temperature and are pumped by intense femtosecond optical pulses at 0.81-{\mu}m center wavelength in a pump-probe geometry. We observe much larger relative transmittance changes (up to about 8%) on the split-ring-resonator arrays as compared to the bare quantum well (not more than 1-2%). We also observe a much more rapid temporal decay component of the differential transmittance signal of 15 ps for the case of split-ring resonators coupled to the quantum well compared to the case of the bare quantum well, where we find about 0.7 ns. The latter observation is ascribed to the Purcell effect that arises from the evanescent coupling of the split-ring resonators to the quantum-well gain. All experimental results are compared with a recently introduced analytical toy model that accounts for this evanescent coupling, leading to excellent overall qualitative agreement.
Gibbs Hyatt M.
Hendrickson Joshua
Khitrova Galina
Linden Stefan
Meinzer Nina
No associations
LandOfFree
Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-685030