Physics – Quantum Physics
Scientific paper
2006-09-13
Proc. Natl. Acad. Sci. USA 104, 18415 (2007)
Physics
Quantum Physics
22 pages, 5 figures, published version
Scientific paper
10.1073/pnas.0709075104
Topological quantum states of matter, both Abelian and non-Abelian, are characterized by excitations whose wavefunctions undergo non-trivial statistical transformations as one excitation is moved (braided) around another. Topological quantum computation proposes to use the topological protection and the braiding statistics of a non-Abelian topological state to perform quantum computation. The enormous technological prospect of topological quantum computation provides new motivation for experimentally observing a topological state. Here we explicitly work out a realistic experimental scheme to create and braid the Abelian topological excitations in the Kitaev model built on a tunable robust system, a cold atom optical lattice. We also demonstrate how to detect the key feature of these excitations, their braiding statistics. Observation of this statistics would directly establish the existence of anyons, quantum particles which are neither fermions nor bosons. In addition to establishing topological matter, the experimental scheme we develop here can also be adapted to a non-Abelian topological state, supported by the same Kitaev model but in a different parameter regime, to eventually build topologically protected quantum gates.
Sarma Sankar Das
Scarola Vito W.
Tewari Sumanta
Zhang Chuanwei
No associations
LandOfFree
Anyonic Braiding in Optical Lattices does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Anyonic Braiding in Optical Lattices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anyonic Braiding in Optical Lattices will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-554738