Anomalous Hyperfine Structure of NSF3 in the Degenerate Vibrational State v5=1: Lifting of the Parity Degeneracy by the Fluorine Spin-Rotation Interaction

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Microwave (Rotational)

Scientific paper

For the principal isotopomer 14N32S19F3 of thiazyl trifluoride in the degenerate fundamental state (v5=1), the hyperfine structure has been investigated in the Q-branch spectrum between 8 and 26.5 GHz using microwave Fourier transform waveguide spectrometers with a resolution limit of ≈ 30 kHz. In addition to l% -type doubling spectra and l-type resonance transitions with (Δ k =% Δ l=± 2), perturbation-allowed spectra were measured with Δ % (k-l) =± 3, ± 6. The range in J was from 13 to 61; for the lower states, kl=-3, -2, -1, 0, +1. For all the transitions, the hyperfine patterns observed are predicted to be doublets when only the nitrogen quadrupole Hamiltonian HQN is taken into account. Doublets were indeed measured for transitions with Γ RV=% A1rightarrow A2, where Γ RV is the rovibrational symmetry. However, when Γ RV=Erightarrow E, triplets and quartets were observed in addition to doublets. These anomalous hyperfine patterns are shown to be due to the (Δ k=± 1) and (Δ k=% ± 2) matrix elements of the fluorine spin-rotation Hamiltonian H% NF characterized by the fluorine spin-rotation constants % c(1)=(cxz+czxast ) and c(2)=(cxx-cyy), respectively. These terms in HNF lift the parity degeneracy for Γ RV=E. The rovibrational Hamiltonian HRV was adopted from an earlier partner study. A good fit to the hyperfine data was obtained with a standard deviation of 3.1 kHz. In the fitting process, 12 rovibrational parameters were varied, while the remaining constants in HRV were left at the values of Ref. (1). In addition, 6 hyperfine parameters were determined: four in HQN, and two in HNF. It was found that \vert c(1)\vert =7.48(24) kHz and \vert c(2)\vert =2.423(22) kHz. This determination of \vert c(1)\vert is the first to be reported based on frequency measurements. The key to the observation of the parity doubling lies in the severe mixing into the eigenvectors of basis vectors with several different values of kl as a result of the clustering1 of rovibrational levels at low K.
S. Macholl, H. Harder, H. Mäder, L. Margulès, P. Dréan, J. Cosléou, J. Demaison, and P. Pracna, J. Phys. Chem. A 113, 668 (2009).

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Anomalous Hyperfine Structure of NSF3 in the Degenerate Vibrational State v5=1: Lifting of the Parity Degeneracy by the Fluorine Spin-Rotation Interaction does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Anomalous Hyperfine Structure of NSF3 in the Degenerate Vibrational State v5=1: Lifting of the Parity Degeneracy by the Fluorine Spin-Rotation Interaction, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anomalous Hyperfine Structure of NSF3 in the Degenerate Vibrational State v5=1: Lifting of the Parity Degeneracy by the Fluorine Spin-Rotation Interaction will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1591736

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.