Physics – Atomic Physics
Scientific paper
2007-07-28
Physics
Atomic Physics
12 pages, 10 figures
Scientific paper
10.1103/PhysRevA.76.043402
We analyzed the two-dimensional (2D) electron momentum distributions of high-energy photoelectrons of atoms in an intense laser field using the second-order strong field approximation (SFA2). The SFA2 accounts for the rescattering of the returning electron with the target ion to first order and its validity is established by comparing with results obtained by solving the time-dependent Schr\"{o}dinger equation (TDSE) for short pulses. By analyzing the SFA2 theory, we confirmed that the yield along the back rescattered ridge (BRR) in the 2D momentum spectra can be interpreted as due to the elastic scattering in the backward directions by the returning electron wave packet. The characteristics of the extracted electron wave packets for different laser parameters are analyzed, including their dependence on the laser intensity and pulse duration. For long pulses we also studied the wave packets from the first and the later returns.
Chen Zhangjin
Le Anh-Thu
Lin Devon C.
Morishita Toru
No associations
LandOfFree
Analysis of two-dimensional high-energy photoelectron momentum distributions in single ionization of atoms by intense laser pulses does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Analysis of two-dimensional high-energy photoelectron momentum distributions in single ionization of atoms by intense laser pulses, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Analysis of two-dimensional high-energy photoelectron momentum distributions in single ionization of atoms by intense laser pulses will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-395721