Physics – Chemical Physics
Scientific paper
2008-07-28
Physics
Chemical Physics
Submitted to SIAM Journal on Applied Mathematics
Scientific paper
A framework for the analysis of stochastic models of chemical systems for which the deterministic mean-field description is undergoing a saddle-node infinite period (SNIPER) bifurcation is presented. Such a bifurcation occurs for example in the modelling of cell-cycle regulation. It is shown that the stochastic system possesses oscillatory solutions even for parameter values for which the mean-field model does not oscillate. The dependence of the mean period of these oscillations on the parameters of the model (kinetic rate constants) and the size of the system (number of molecules present) is studied. Our approach is based on the chemical Fokker-Planck equation. To get some insights into advantages and disadvantages of the method, a simple one-dimensional chemical switch is first analyzed, before the chemical SNIPER problem is studied in detail. First, results obtained by solving the Fokker-Planck equation numerically are presented. Then an asymptotic analysis of the Fokker-Planck equation is used to derive explicit formulae for the period of oscillation as a function of the rate constants and as a function of the system size.
Chapman Jonathan S.
Erban Radek
Kevrekidis Ioannis G.
Vejchodsky Tomas
No associations
LandOfFree
Analysis of a stochastic chemical system close to a SNIPER bifurcation of its mean-field model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Analysis of a stochastic chemical system close to a SNIPER bifurcation of its mean-field model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Analysis of a stochastic chemical system close to a SNIPER bifurcation of its mean-field model will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-313620