An Assessment of the Relative Roles of Crust and Mantle in Magma Genesis: An Elemental Approach

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

143

Scientific paper

The elemental compositions of terrestrial igneous rocks are reviewed with special emphasis on those elements that partition strongly into the liquids in mafic and ultramafic systems. Published data are supplemented by 79 new major- and trace-element analyses. The magmatism of ocean basins is considered in terms of a model that has the following main features: (i) density layering in the sub-lithospheric upper mantle, so that the more fertile source of ocean-island basalts (o.i.b.) underlies the less fertile source of mid-ocean ridge basalts (m.o.r.b.); (ii) the genesis of all mantle-derived magmas restricted to very small degrees of partial fusion; (iii) genesis of m.o.r.b. source mantle as residuum from the loss of a melt fraction (forming o.i.b. magmas and lithospheric veins) from o.i.b.-source mantle; (iv) subduction of o.i.b.-veined lithosphere, with a thin veneer of m.o.r.b. and sediments, to the 670 km seismic discontinuity, followed by re-heating of these components and their buoyant upwelling into the o.i.b.-source reservoir; (v) very little chemical communication across the 670 km discontinuity. All continental anorogenic magmatism (distant from subduction zones in space and time) seems to be related ultimately to the o.i.b.-source mantle reservoir, which therefore must extend beneath the lithospheric roots of continents. The minor sodic-alkalic magmatism of continents is effectively identical in composition to o.i.b. Some continental flood basalts are similar but the majority contain minor contamination (rarely more than 15%) from fusible sialic rocks. Although substantial amounts of sediments appear to be subducted, only a small proportion of them seems to re-appear in the products of island-arc and Cordilleran magmatism. Much larger sediment fractions enter the sparse ultrapotassic magmatism that occurs far behind some subcontinental subduction zones and also characteristically follows the subduction related magmatism of collisional orogenies. The remaining subducted sediments finally pass into the o.i.b.-mantle source reservoir. It is well established that, during and immediately after collisional orogeny, the fusion of sialic crust contributes substantially (or even occasionally exclusively) to batholithic magmatism. Nevertheless, the elemental variation in such magmas implies that the role of fractional crystallization in their genesis has tended to be underestimated in recent years. Mantle-derived mafic to ultramafic magmas appear to be directly or indirectly (as heat sources) involved at deep crustal levels in the parentage of most batholithic intermediate and acid magams. These mantle-derived liquids are subduction-related before continental collisions and then change to o.i.b., several million years after subduction ceases. Enhanced subduction of terrigenous sediments during the final stages of ocean closure leads to the large subducted sialic fractions which re-emerge in the ultrapotassic mafic magmas that characteristically appear immediately after a continental collision.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

An Assessment of the Relative Roles of Crust and Mantle in Magma Genesis: An Elemental Approach does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with An Assessment of the Relative Roles of Crust and Mantle in Magma Genesis: An Elemental Approach, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and An Assessment of the Relative Roles of Crust and Mantle in Magma Genesis: An Elemental Approach will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1501705

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.