An acoustically-driven biochip - Impact of flow on the cell-association of targeted drug carriers

Physics – Biological Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

19 pages

Scientific paper

10.1039/B906006E

The interaction of targeted drug carriers with epithelial and endothelial barriers in vivo is largely determined by the dynamics of the body fluids. To simulate these conditions in binding assays, a fully biocompatible in vitro model was developed which can accurately mimic a wide range of physiological flow conditions on a thumbnail-format cell-chip. This acoustically-driven microfluidic system was used to study the interaction characteristics of protein-coated particles with cells. Poly(D,L-lactide-co-glycolide) (PLGA) microparticles (2.86 {\pm} 0.95 {\mu}m) were conjugated with wheat germ agglutinin (WGA-MP, cytoadhesive protein) or bovine serum albumin (BSA-MP, nonspecific protein) and their binding to epithelial cell monolayers was investigated under stationary and flow conditions. While mean numbers of 1500 {\pm} 307 mm-2 WGA-MP and 94 {\pm} 64 mm-2 BSA-MP respectively were detected to be cell-bound in the stationary setup, incubation at increasing flow velocities increasingly antagonized the attachment of both types of surface-modified particles. However, while binding of BSA-MP was totally inhibited by flow, grafting with WGA resulted in a pronounced anchoring effect. This was indicated by a mean number of 747 {\pm} 241 mm-2 and 104 {\pm} 44 mm-2 attached particles at shear rates of 0.2 s-1 and 1 s-1 respectively. Due to the compactness of the fluidic chip which favours parallelization, this setup represents a highly promising approach towards a screening platform for the performance of drug delivery vehicles under physiological flow conditions. In this regard, the flow-chip is expected to provide substantial information for the successful design and development of targeted micro- and nanoparticulate drug carrier systems.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

An acoustically-driven biochip - Impact of flow on the cell-association of targeted drug carriers does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with An acoustically-driven biochip - Impact of flow on the cell-association of targeted drug carriers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and An acoustically-driven biochip - Impact of flow on the cell-association of targeted drug carriers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-93646

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.