Other
Scientific paper
Feb 2005
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005esasp.563..447s&link_type=abstract
Proceedings of the Fifth European Symposium on Aerothermodynamics for Space Vehicles (ESA SP-563). 8-11 November 2004, Cologne,
Other
Scientific paper
From Gagarin spacecraft to reusable orbiter Buran, RSC Energia has traveled a long way in the search for the most optimal and, which is no less important, the most reliable spacecraft for manned space flight. During the forty years of space exploration, in cooperation with a broad base of subcontractors, a number of problems have been solved which assure a safe long stay in space. Vostok and Voskhod spacecraft were replaced with Soyuz supporting a crew of three. During missions to a space station, it provides crew rescue capability in case of a space station emergency at all times (the spacecraft life is 200 days).The latest modification of Soyuz spacecraft -Soyuz TMA -in contrast to its predecessors, allows to become a space flight participant to a person of virtually any anthropometric parameters with a mass of 50 to 95 kg capable of withstanding up to 6 g load during descent. At present, Soyuz TMA spacecraft are the state-of-the-art, reliable and only means of the ISS crew delivery, in-flight support and return. Introduced on the basis of many years of experience in operation of manned spacecraft were not only the principles of deep redundancy of on-board systems and equipment, but, to assure the main task of the spacecraft -the crew return to Earth -the principles of functional redundancy. That is, vital operations can be performed by different systems based on different physical principles. The emergency escape system that was developed is the only one in the world that provides crew rescue in case of LV failure at any phase in its flight. Several generations of space stations that have been developed have broadened, virtually beyond all limits, capabilities of man in space. The docking system developed at RSC Energia allowed not only to dock spacecraft in space, but also to construct in orbit various complex space systems. These include large space stations, and may include in the future the in-orbit construction of systems for the exploration of the Moon and Mars.. Logistics spacecraft Progress have been flying regularly since 1978. The tasks of these unmanned spacecraft include supplying the space station with all the necessities for long-duration missions, such as propellant for the space station propulsion system, crew life support consumables, scientific equipment for conducting experiments. Various modifications of the spacecraft have expanded the space station capabilities. 1988 saw the first, and, much to our regret, the last flight of the reusable orbiter Buran.. Buran could deliver to orbit up to 30 tons of cargo, return 20 tons to Earth and have a crew of up to 10. However, due to our country's economic situation the project was suspended.
Dyadkin A. A.
Petrov N. K.
Reshetin A. G.
Semenov Yu P.
Simakova T. V.
No associations
LandOfFree
Aerodynamics of Reentry Vehicle Clipper at Descent Phase does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Aerodynamics of Reentry Vehicle Clipper at Descent Phase, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aerodynamics of Reentry Vehicle Clipper at Descent Phase will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1358598