Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
1996-08-09
Physics
High Energy Physics
High Energy Physics - Theory
Expanded Version
Scientific paper
A convenient framework is developed to generalize Berry's investigation of the adiabatic geometrical phase for a classical relativistic charged scalar field in a curved background spacetime which is minimally coupled to electromagnetism and an arbitrary (non-electromagnetic) scalar potential. It involves a two-component formulation of the corresponding Klein-Gordon equation. A precise definition of the adiabatic approximation is offered and conditions of its validity are discussed. It is shown that the adiabatic geometric phase can be computed without making a particular choice for an inner product on the space of solutions of the field equations. What is needed is just an inner product on the Hilbert space of the square integrable functions defined on the spatial hypersurfaces. The two-component formalism is applied in the investigation of the adiabatic geometric phases for several specific examples, namely, a rotating magnetic field in Minkowski space, a rotating cosmic string, and an arbitrary spatially homogeneous cosmological background. It is shown that the two-component formalism reproduces the known results for the first two examples. It also leads to several interesting results for the case of spatially homogeneous cosmological models. In particular, it is shown that the adiabatic geometric phase angles vanish for Bianchi type I models. The situation is completely different for Bianchi type IX models where a variety of nontrivial non-Abelian adiabatic geometrical phases can occur. The analogy between the adiabatic geometric phases induced by the Bianchi type IX backgrounds and those associated with the well-known time-dependent nuclear quadrupole Hamiltonians is also pointed out.
No associations
LandOfFree
Adiabatic Geometrical Phase for Scalar Fields in a Curved Spacetime does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Adiabatic Geometrical Phase for Scalar Fields in a Curved Spacetime, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adiabatic Geometrical Phase for Scalar Fields in a Curved Spacetime will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-730624