Physics – Space Physics
Scientific paper
2009-06-22
Physics
Space Physics
D. M. Salter, D. Hei{\ss}elmann, G. Chaparro, G. van der Wolk, P. Rei{\ss}aus, A. G. Borst, R. W. Dawson, E. de Kuyper, G. Dri
Scientific paper
We discuss the design, operation, and performance of a vacuum setup constructed for use in zero (or reduced) gravity conditions to initiate collisions of fragile millimeter-sized particles at low velocity and temperature. Such particles are typically found in many astronomical settings and in regions of planet formation. The instrument has participated in four parabolic flight campaigns to date, operating for a total of 2.4 hours in reduced gravity conditions and successfully recording over 300 separate collisions of loosely packed dust aggregates and ice samples. The imparted particle velocities achieved range from 0.03-0.28 m s^-1 and a high-speed, high-resolution camera captures the events at 107 frames per second from two viewing angles separated by either 48.8 or 60.0 degrees. The particles can be stored inside the experiment vacuum chamber at temperatures of 80-300 K for several uninterrupted hours using a built-in thermal accumulation system. The copper structure allows cooling down to cryogenic temperatures before commencement of the experiments. Throughout the parabolic flight campaigns, add-ons and modifications have been made, illustrating the instrument flexibility in the study of small particle collisions.
Blum Jacques
Borst A. G.
Chaparro G.
Dawson William R.
der Tuijn C. van P.
No associations
LandOfFree
A Zero-Gravity Instrument to Study Low Velocity Collisions of Fragile Particles at Low Temperatures does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Zero-Gravity Instrument to Study Low Velocity Collisions of Fragile Particles at Low Temperatures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Zero-Gravity Instrument to Study Low Velocity Collisions of Fragile Particles at Low Temperatures will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-495319