Computer Science – Numerical Analysis
Scientific paper
2011-09-05
Computer Science
Numerical Analysis
17 pages, 3 figures
Scientific paper
We describe and test an easy-to-implement two-step high-order compact (2SHOC) scheme for the Laplacian operator and its implementation into an explicit finite-difference scheme for simulating the nonlinear Schr\"odinger equation (NLSE). Our method relies on a compact `double-differencing' which is shown to be computationally equivalent to standard fourth-order non-compact schemes. Through numerical simulations of the NLSE using fourth-order Runge-Kutta, we confirm that our scheme shows the desired fourth-order accuracy. A computation and storage requirement comparison is made between the 2SHOC scheme and the non-compact equivalent scheme for both the Laplacian operator alone, as well as when implemented in the NLSE simulations. Stability bounds are also shown in order to get maximum e?cffiency out of the method. We conclude that the modest increase in storage and computation of the 2SHOC schemes are well worth the advantages of having the schemes compact, and their ease of implementation makes their use very useful for practical implementations.
Caplan Ronald M.
Carretero R.
No associations
LandOfFree
A Two-Step High-Order Compact Scheme for the Laplacian Operator and its Implementation in an Explicit Method for Integrating the Nonlinear Schrödinger Equation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Two-Step High-Order Compact Scheme for the Laplacian Operator and its Implementation in an Explicit Method for Integrating the Nonlinear Schrödinger Equation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Two-Step High-Order Compact Scheme for the Laplacian Operator and its Implementation in an Explicit Method for Integrating the Nonlinear Schrödinger Equation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-92425