Astronomy and Astrophysics – Astronomy
Scientific paper
Oct 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006geoji.167..361p&link_type=abstract
Geophysical Journal International, Volume 167, Issue 1, pp. 361-379.
Astronomy and Astrophysics
Astronomy
73
D'', Radial Anisotropy, Tomography, Transition Zone, Upper Mantle
Scientific paper
We present a 3-D radially anisotropic S velocity model of the whole mantle (SAW642AN), obtained using a large three component surface and body waveform data set and an iterative inversion for structure and source parameters based on Non-linear Asymptotic Coupling Theory (NACT). The model is parametrized in level 4 spherical splines, which have a spacing of ~ 8°. The model shows a link between mantle flow and anisotropy in a variety of depth ranges. In the uppermost mantle, we confirm observations of regions with VSH > VSV starting at ~80 km under oceanic regions and ~200 km under stable continental lithosphere, suggesting horizontal flow beneath the lithosphere. We also observe a VSV > VSH signature at ~150-300 km depth beneath major ridge systems with amplitude correlated with spreading rate for fast-spreading segments. In the transition zone (400-700 km depth), regions of subducted slab material are associated with VSV > VSH, while the ridge signal decreases. While the mid-mantle has lower amplitude anisotropy (<1 per cent), we also confirm the observation of radially symmetric VSH > VSV in the lowermost 300 km, which appears to be a robust conclusion, despite an error in our previous paper which has been corrected here. The 3-D deviations from this signature are associated with the large-scale low-velocity superplumes under the central Pacific and Africa, suggesting that VSH > VSV is generated in the predominant horizontal flow of a mechanical boundary layer, with a change in signature related to transition to upwelling at the superplumes.
Panning Mark
Romanowicz Barbara
No associations
LandOfFree
A three-dimensional radially anisotropic model of shear velocity in the whole mantle does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A three-dimensional radially anisotropic model of shear velocity in the whole mantle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A three-dimensional radially anisotropic model of shear velocity in the whole mantle will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-906014