Physics – High Energy Physics – High Energy Physics - Phenomenology
Scientific paper
2005-06-15
Phys.Rev. D72 (2005) 053009
Physics
High Energy Physics
High Energy Physics - Phenomenology
8 figures, some typos corrected, minor editing in the references
Scientific paper
10.1103/PhysRevD.72.053009
The presence of a tau component in the flux of atmospheric neutrinos inside the Earth, due to flavor oscillations, makes these neutrinos a valuable probe of interactions of the tau neutrino with matter. We study -- analytically and numerically -- the effects of nonstandard interactions in the nu_e-nu_tau sector on atmospheric neutrino oscillations, and calculate the bounds on the exotic couplings that follow from combining the atmospheric neutrino and K2K data. We find very good agreement between numerical results and analytical predictions derived from the underlying oscillation physics. While improving on existing accelerator bounds, our bounds still allow couplings of the size comparable to the standard weak interaction. The inclusion of new interactions expands the allowed region of the vacuum oscillation parameters towards smaller mixing angles, 0.2 ~< sin^2 theta_{23} ~< 0.7, and slightly larger mass squared splitting, 1.5 * 10^{-3} eV^2 ~< |\Delta m^2_{23}| ~< 4.0 * 10^{-3} eV^2, compared to the standard case. The impact of the K2K data on all these results is significant; further important tests of the nu_e-nu_tau exotic couplings will come from neutrino beams experiments such as MINOS and long baseline projects.
Friedland Alexander
Lunardini Cecilia
No associations
LandOfFree
A test of tau neutrino interactions with atmospheric neutrinos and K2K does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A test of tau neutrino interactions with atmospheric neutrinos and K2K, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A test of tau neutrino interactions with atmospheric neutrinos and K2K will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-288712