Statistics – Machine Learning
Scientific paper
2009-10-13
Statistics
Machine Learning
Scientific paper
Collaborative recommendation is an information-filtering technique that attempts to present information items (movies, music, books, news, images, Web pages, etc.) that are likely of interest to the Internet user. Traditionally, collaborative systems deal with situations with two types of variables, users and items. In its most common form, the problem is framed as trying to estimate ratings for items that have not yet been consumed by a user. Despite wide-ranging literature, little is known about the statistical properties of recommendation systems. In fact, no clear probabilistic model even exists allowing us to precisely describe the mathematical forces driving collaborative filtering. To provide an initial contribution to this, we propose to set out a general sequential stochastic model for collaborative recommendation and analyze its asymptotic performance as the number of users grows. We offer an in-depth analysis of the so-called cosine-type nearest neighbor collaborative method, which is one of the most widely used algorithms in collaborative filtering. We establish consistency of the procedure under mild assumptions on the model. Rates of convergence and examples are also provided.
Biau Gérard
Cadre Benoit
Rouvière Laurent
No associations
LandOfFree
A Stochastic Model for Collaborative Recommendation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Stochastic Model for Collaborative Recommendation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Stochastic Model for Collaborative Recommendation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-640713