Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
1998-12-17
Int.J.Mod.Phys. A14 (1999) 2993-3004
Physics
High Energy Physics
High Energy Physics - Theory
Latex, 12 pages
Scientific paper
10.1142/S0217751X99001457
Starting from a one-particle quasi-exactly solvable system, which is characterized by an intrinsic sl(2) algebraic structure and the energy-reflection symmetry, we construct a daughter N-body Hamiltonian presenting a deformation of the Calogero model. The features of this Hamiltonian are (i) it reduces to a quadratic combination of the generators of sl(N+1); (ii) the interaction potential contains two-body terms and interaction with the force center at the origin; (iii) for quantized values of a certain cohomology parameter n it is quasi-exactly solvable, the multiplicity of states in the algebraic sector is (N+n)!/(N!n!); (iv) the energy-reflection symmetry of the parent system is preserved.
Hou Xin-rui
Shifman Michael
No associations
LandOfFree
A Quasi-Exactly Solvable N-Body Problem with the sl(N+1) Algebraic Structure does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Quasi-Exactly Solvable N-Body Problem with the sl(N+1) Algebraic Structure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Quasi-Exactly Solvable N-Body Problem with the sl(N+1) Algebraic Structure will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-347866