Physics
Scientific paper
Dec 1998
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1998jgr...10329651r&link_type=abstract
Journal of Geophysical Research, Volume 103, Issue A12, p. 29651-29664
Physics
55
Interplanetary Physics: Solar Wind Plasma
Scientific paper
Some interplanetary shocks associated with coronal mass ejections (CMEs) generate type II radio emissions at the local plasma frequency and/or its harmonic. These type II radio emissions provide a means of remotely studying and tracking CMEs from the solar corona to 1 AU and beyond. New analysis techniques that inherently reveal the dynamics of a CME as it propagates through the interplanetary medium are used for tracking the CME-associated radio emissions. The techniques make use of dynamic spectra of the radio intensity plotted as a function of inverse frequency and time. When in situ measurements are also available, the analyses determine unequivocally whether the type II radio emissions occurred at the fundamental or harmonic of the local plasma frequency in the upstream or downstream regions of the CME-driven shock. These new analysis techniques are applied to three type II radio bursts that were observed by the WAVES radio experiment on the Wind spacecraft on May 13-14, November 4-5, and November 6-7, 1997; each event corresponded to a CME observed by SOHO LASCO (large angle and spectrometric coronagraph), and each event was observed in situ by Wind. We find that the type II radio emissions for each of the three events were generated at both the fundamental and harmonic of the plasma frequency in the upstream region of the CME-driven shock, that the type II emissions appear, in general, to originate in regions along the shock front of higher than normal densities, and that the radio emission sites along the shock front change with time. In one case, additional radio tracking, provided by the direction-finding analysis, was used to locate the sites of the radio emission along the shock front.
Fainberg Joe
Kaiser Michael L.
Reiner M. J.
Stone Robert G.
No associations
LandOfFree
A new method for studying remote type II radio emissions from coronal mass ejection-driven shocks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A new method for studying remote type II radio emissions from coronal mass ejection-driven shocks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A new method for studying remote type II radio emissions from coronal mass ejection-driven shocks will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1294281