A new hierarchy of integrable systems associated to Hurwitz spaces

Physics – Mathematical Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

minor revision

Scientific paper

In this paper we introduce a new class of integrable systems, naturally associated to Hurwitz spaces (spaces of meromorphic functions over Riemann surfaces). The critical values of the meromorphic functions play the role of "times". Our systems give a natural generalization of the Ernst equation; in genus zero they realize the scheme of deformation of integrable systems proposed by Burtsev, Mikhailov and Zakharov. We show that any solution of these systems in rank 1 defines a flat diagonal metric (Darboux-Egoroff metric) together with a class of corresponding systems of hydrodynamic type and their solutions.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A new hierarchy of integrable systems associated to Hurwitz spaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A new hierarchy of integrable systems associated to Hurwitz spaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A new hierarchy of integrable systems associated to Hurwitz spaces will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-175575

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.