Physics – Optics
Scientific paper
Jan 2002
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002iaf..confe.744f&link_type=abstract
IAF abstracts, 34th COSPAR Scientific Assembly, The Second World Space Congress, held 10-19 October, 2002 in Houston, TX, USA.,
Physics
Optics
Scientific paper
present launch technology. Due to the satellites low power and small antenna, the power flux density reaching the earth's surface is only 1 W/m2. This is probably insufficient for practical applications, so we investigated the minimum density required for a rectenna to operate. because the input power of the rectifying circuits is lower. We thus developed a rectenna with a larger aperture area that can operate satisfactorily when the power flux density is low because the input power to the rectifying circuits is not reduced. antenna array. Although constructing an antenna array is relatively easy, the substrate material is costly. We thus took the second approach--using a rectenna with a parabolic antenna. power transmission frequency was 5.8 GHz. We designed a center-feed parabolic antenna with a 60-cm diameter using a circular patch antenna as the primary feed. The gain and aperture efficiency were 29 dBi and 62 %, respectively. The 3-dB beam width was 7 degrees. Rectifying circuits were constructed on the reverse side of the patch antenna, and its efficiency was about 75 % at an input power of 300 mW and a load resistance of 300 ohms. Microwave power transmission experiments in an anechoic chamber showed that the efficiency of a rectenna with a parabolic reflector was 50 %. increase the amount of time to receive data from the satellite. Therefore, we changed the length of the two orthogonal directions of the reflector.We propose rectangular reflector rectenna that can arrange without clearance on the whole ground rectenna site. We calculated the directivity of this antenna by using the physical optics method. The major and minor axis length of antenna was 85 x 43 cm, and its 3-dB beam width was 4 and 8 degrees, respectively, and the gain was 30 dBi.The degradation in the aperture efficiency compared to the circular parabolic antenna was about 12 %. power region of its normal site in the SPS. The transmission using microwave power was successful even in a region of low power.
No associations
LandOfFree
A Low Power Density Rectenna for SPS Application does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Low Power Density Rectenna for SPS Application, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Low Power Density Rectenna for SPS Application will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1332604