A Lattice Problem in Quantum NP

Physics – Quantum Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We consider coGapSVP_\sqrt{n}, a gap version of the shortest vector in a lattice problem. This problem is known to be in AM\cap coNP but is not known to be in NP or in MA. We prove that it lies inside QMA, the quantum analogue of NP. This is the first non-trivial upper bound on the quantum complexity of a lattice problem. The proof relies on two novel ideas. First, we give a new characterization of QMA, called QMA+. Working with the QMA+ formulation allows us to circumvent a problem which arises commonly in the context of QMA: the prover might use entanglement between different copies of the same state in order to cheat. The second idea involves using estimations of autocorrelation functions for verification. We make the important observation that autocorrelation functions are positive definite functions and using properties of such functions we severely restrict the prover's possibility to cheat. We hope that these ideas will lead to further developments in the field.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A Lattice Problem in Quantum NP does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A Lattice Problem in Quantum NP, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Lattice Problem in Quantum NP will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-663276

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.