Physics – Mathematical Physics
Scientific paper
2005-08-17
Physics
Mathematical Physics
13 pages, LaTeX, uses pstricks and osid Submitted to the B G Wybourne memorial conference proceedings
Scientific paper
We describe a Hopf algebraic approach to the Grothendieck ring of representations of subgroups $H_\pi$ of the general linear group GL(n) which stabilize a tensor of Young symmetry $\{\pi\}$. It turns out that the representation ring of the subgroup can be described as a Hopf algebra twist, with a 2-cocycle derived from the Cauchy kernel 2-cocycle using plethysms. Due to Schur-Weyl duality we also need to employ the coproduct of the inner multiplication. A detailed analysis including combinatorial proofs for our results can be found in math-ph/0505037. In this paper we focus on the Hopf algebraic treatment, and a more formal approach to representation rings and symmetric functions.
Fauser Bertfried
Jarvis Peter D.
King Ronald C.
No associations
LandOfFree
A Hopf algebraic approach to the theory of group branchings does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Hopf algebraic approach to the theory of group branchings, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Hopf algebraic approach to the theory of group branchings will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-138812