Physics – Medical Physics
Scientific paper
2011-09-21
Phys. Med. Biol. 57 (2012) 1203-1216
Physics
Medical Physics
17 pages, 4 figures, 1 table
Scientific paper
10.1088/0031-9155/55/5/1203
We conduct a theoretical study of various solution methods for the adaptive fractionation problem. The two messages of this paper are: (i) dynamic programming (DP) is a useful framework for adaptive radiation therapy, particularly adaptive fractionation, because it allows us to assess how close to optimal different methods are, and (ii) heuristic methods proposed in this paper are near-optimal, and therefore, can be used to evaluate the best possible benefit of using an adaptive fraction size. The essence of adaptive fractionation is to increase the fraction size when the tumor and organ-at-risk (OAR) are far apart (a "favorable" anatomy) and to decrease the fraction size when they are close together. Given that a fixed prescribed dose must be delivered to the tumor over the course of the treatment, such an approach results in a lower cumulative dose to the OAR when compared to that resulting from standard fractionation. We first establish a benchmark by using the DP algorithm to solve the problem exactly. In this case, we characterize the structure of an optimal policy, which provides guidance for our choice of heuristics. We develop two intuitive, numerically near-optimal heuristic policies, which could be used for more complex, high-dimensional problems. Furthermore, one of the heuristics requires only a statistic of the motion probability distribution, making it a reasonable method for use in a realistic setting. Numerically, we find that the amount of decrease in dose to the OAR can vary significantly (5 - 85%) depending on the amount of motion in the anatomy, the number of fractions, and the range of fraction sizes allowed. In general, the decrease in dose to the OAR is more pronounced when: (i) we have a high probability of large tumor-OAR distances, (ii) we use many fractions (as in a hyper-fractionated setting), and (iii) we allow large daily fraction size deviations.
Bortfeld Thomas
Craft David
Ramakrishnan Jagdish
Tsitsiklis John N.
No associations
LandOfFree
A Dynamic Programming Approach to Adaptive Fractionation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Dynamic Programming Approach to Adaptive Fractionation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Dynamic Programming Approach to Adaptive Fractionation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-257590