Mathematics – Optimization and Control
Scientific paper
2005-09-23
Mathematics
Optimization and Control
IEEE Conference on Decision and Control, 2006 6 pages, 2 figures. v3: improved exposition, and shortened paper to 6 pages v2:
Scientific paper
In this paper we study a discrete variational optimal control problem for the rigid body. The cost to be minimized is the external torque applied to move the rigid body from an initial condition to a pre-specified terminal condition. Instead of discretizing the equations of motion, we use the discrete equations obtained from the discrete Lagrange--d'Alembert principle, a process that better approximates the equations of motion. Within the discrete-time setting, these two approaches are not equivalent in general. The kinematics are discretized using a natural Lie-algebraic formulation that guarantees that the flow remains on the Lie group SO(3) and its algebra so(3). We use Lagrange's method for constrained problems in the calculus of variations to derive the discrete-time necessary conditions. We give a numerical example for a three-dimensional rigid body maneuver.
Bloch Anthony M.
Hussein Islam I.
Leok Melvin
Sanyal Amit K.
No associations
LandOfFree
A Discrete Variational Integrator for Optimal Control Problems on SO(3) does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Discrete Variational Integrator for Optimal Control Problems on SO(3), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Discrete Variational Integrator for Optimal Control Problems on SO(3) will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-71202