Physics – Optics
Scientific paper
2004-11-23
Microelectronic Engineering vol. 78-79, 185 (2005)
Physics
Optics
Accepted for Microelectronic Engineering
Scientific paper
10.1016/j.mee.2004.12.025
We present a laterally emitting, coupled cavity micro fluidic dye ring laser, suitable for integration into lab-on-a-chip micro systems. The micro-fluidic laser has been successfully designed, fabricated, characterized and modelled. The resonator is formed by a micro-fluidic channel bounded by two isosceles triangle mirrors. The micro-fluidic laser structure is defined using photo lithography in 10 microns thick SU-8 polymer on a glass substrate. The micro fluidic channel is sealed by a glass lid, using PMMA adhesive bonding. The laser is characterized using the laser dye Rhodamine 6G dissolved in ethanol or ethylene glycol as the active gain medium, which is pumped through the micro-fluidic channel and laser resonator. The dye laser is optically pumped normal to the chip plane at 532 nm by a pulsed, frequency doubled Nd:YAG laser and lasing is observed with a threshold pump pulse energy flux of around 55 micro-Joule/square-milimeter. The lasing is multi-mode, and the laser has switchable output coupling into an integrated polymer planar waveguide. Tuning of the lasing wavelength is feasible by changing the dye/solvent properties.
Balslev S.
Gersborg-Hansen Morten
Kristensen Anders
Mortensen Niels Asger
No associations
LandOfFree
A Coupled Cavity Micro Fluidic Dye Ring Laser does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Coupled Cavity Micro Fluidic Dye Ring Laser, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Coupled Cavity Micro Fluidic Dye Ring Laser will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-599540