Physics
Scientific paper
Jan 1996
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1996jgr...101..323z&link_type=abstract
Journal of Geophysical Research, Volume 101, Issue A1, p. 323-334
Physics
7
Ionosphere: Polar Cap Ionosphere, Ionosphere: Ionosphere/Magnetosphere Interactions, Magnetospheric Physics: Polar Cap Phenomena, Magnetospheric Physics: Auroral Phenomena
Scientific paper
A quantitative model-observation comparison of multiple polar cap arcs has been conducted by using a time-dependent theoretical model of polar cap arcs. In particular, the electrodynamical features of multiple polar cap arcs with various spacings are simulated and the results are compared with the images obtained from the All-Sky Intensified Photometer at Qaanaaq. The results show that the observed and simulated arcs are quite similar, both spatially and temporally. The results support the theory proposed by Zhu et al. [1993a, 1994b] that the structure of polar cap arcs is mainly determined by the magnetosphere-ionosphere (M-I) coupling processes and that the spacing of multiple polar cap arcs is closely related to the hardness of the primary magnetospheric precipitation. It is found that for the multiple polar cap arcs with both narrow and wide spacings, the associated field-aligned currents are mainly closed by Pedersen currents. It is also found that a hard precipitation can lead to a highly structured secondary arc because of the nonlinear M-I coupling processes.
Crain David J.
Schunk Robert W.
Sojka Jan J.
Valladares Cesar E.
Zhu Lijun
No associations
LandOfFree
Model-observation comparison study of multiple polar cap arcs does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Model-observation comparison study of multiple polar cap arcs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Model-observation comparison study of multiple polar cap arcs will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-971797