Physics
Scientific paper
Jan 1977
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1977aj.....82...79s&link_type=abstract
Astronomical Journal, vol. 82, Jan. 1977, p. 79-83. NATO-supported research.
Physics
18
Astronomical Models, Dynamic Stability, Planetary Systems, Solar System, Three Body Problem, Branching (Physics), Celestial Mechanics, Gravitational Constant, Jupiter (Planet), Kepler Laws, Mathematical Models, Numerical Integration, Planetary Orbits, Saturn (Planet)
Scientific paper
Conditions, based on zero-velocity surfaces, for the stability of planetary systems with three members are established. The results are applied to the sun-Jupiter-Saturn system, and the critical mass factor (gamma) introduced by the Kuiper-Nacozy-Szebehely (1973) theory is recomputed. Depending on the models and physical constants used, the system becomes unstable when the masses of Jupiter and Saturn are increased about 14 times their present value. This compares favorably with Nacozy's (1976) gamma value of 29 obtained by numerical integration, since the present stability condition is expected to give lower values. Instability is defined by the change in the topology of the zero-velocity surfaces allowing mixing, exchange, and bifurcation of the solution.
McKenzie Ralph
Szebehely Vector
No associations
LandOfFree
Stability of planetary systems with bifurcation theory does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Stability of planetary systems with bifurcation theory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stability of planetary systems with bifurcation theory will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-951520