Mathematics – Logic
Scientific paper
Dec 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006slft.confe..45p&link_type=abstract
Proceedings of the XXIVth International Symposium on Lattice Field Theory. July 23-28, 2006, Tucson, Arizona., p.45.1
Mathematics
Logic
Scientific paper
We study the θ dependence of the spectrum of four-dimensional SU(N) gauge theories, where θ is the coefficient of the topological term in the Lagrangian, for N ≥ 3 and in the large-N limit. We compute the O(θ 2 ) terms of the expansions around θ = 0 of the string tension and the lowest glueball mass, respectively σ (θ ) = σ 1 + s2 θ 2 + ... and M(θ ) = M 1 + g2θ 2 + ... , where σ and M are the values at θ = 0. For this purpose we use numerical simulations of the Wilson lattice formulation of SU(N) gauge theories for N = 3, 4, 6. The O(θ 2 ) coefficients turn out to be very small for all N ≥ 3. For example, s2 = -0.08(1) and g2 = -0.06(2) for N = 3. Their absolute values decrease with increasing N. Our results are suggestive of a scenario in which the θ dependence in the string and glueball spectrum vanishes in the large-N limit, at least for sufficiently small values of |θ |. They support the general large-N scaling arguments that indicate θ ≡ θ /N as the relevant Lagrangian parameter in the large-N expansion. ¯
No associations
LandOfFree
The spectrum of SU(N) gauge theories at nonzero theta does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The spectrum of SU(N) gauge theories at nonzero theta, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The spectrum of SU(N) gauge theories at nonzero theta will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-920373