Physics
Scientific paper
Jan 2001
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2001ssrv...95..325l&link_type=abstract
Space Science Reviews, v. 95, Issue 1/2, p. 325-345 (2001).
Physics
30
Scientific paper
Most substorm researchers assume substorms to be caused by a unique large-scale process. However, a critical evaluation of substorm observations indicates that a new paradigm is needed to understand the substorm phenomenon and the magnetospheric dynamics in general. It is proposed here that substorms involve a number of physical processes covering over a wide range of spatial and temporal scales. Potential candidates include the kinetic or shear ballooning instability, the Kelvin-Helmholtz instability, the cross-field current instability, the tearing instability, and magnetic reconnection. An observational constraint on the qualified process for substorm onset is that it must be associated with magnetic field lines of auroral arcs since substorm onsets start with brightening of a pre-existing auroral arc. Which particular process dominates in a given substorm depends on the present and past states of the magnetosphere as well as the external solar wind. The magnetosphere is almost perpetually driven by the solar wind to be near a critical point and in a metastable state. Magnetospheric disturbances occur sporadically in multiple localized sites. A substorm is realized when the combined effect of these localized disturbances become global in extent, much like the system-wide activity in a sandpile or avalanche model.
No associations
LandOfFree
A Multiscale Model for Substorms does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A Multiscale Model for Substorms, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Multiscale Model for Substorms will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-905523