Physics
Scientific paper
Mar 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008soph..248...51m&link_type=abstract
Solar Physics, Volume 248, Issue 1, pp.51-65
Physics
13
Prominences: Formation And Evolution, Prominences: Models
Scientific paper
This paper examines the locations where large, stable solar filaments form relative to magnetic bipoles lying underneath them. The study extends the earlier work of F. Tang to include two additional classification categories for stable filaments and to consider their population during four distinct phases of the solar cycle. With this new classification scheme, results show that over 92% of filaments form in flux distributions that are nonbipolar in nature where the filament lies either fully (79%) or partially (13%) above a polarity inversion line (PIL) external to any single bipole. Filaments that form within a single bipole (traditionally called Type A) are not as common as previously thought. These results are a significant departure from those of F. Tang. Consistency with the earlier work is shown when our data are regrouped to conform to the two-category classification scheme for filaments adopted by F. Tang. We also demonstrate that only filaments that form along the external PIL lying between two bipoles (62% of the full sample, traditionally called Type B) show any form of solar cycle dependence, where their number significantly increases with magnetic activity over the solar cycle. Finally, current observations and theoretical models for the formation of filaments are discussed in the context of the present results. We conclude that key elements in the formation of the majority of filaments considered within this study must be the convergence of magnetic flux resulting in either flux cancellation or coronal reconnection.
Gaizauskas Victor
Mackay Duncan H.
Yeates Anthony R.
No associations
LandOfFree
Where Do Solar Filaments Form?: Consequences for Theoretical Models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Where Do Solar Filaments Form?: Consequences for Theoretical Models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Where Do Solar Filaments Form?: Consequences for Theoretical Models will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-882368