GCM Simulations of Dust and Water Ice Clouds in the Mars Atmosphere

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

The current Mars climate is characterized by two distinct seasons associated with the strong orbital modulation of insolation; a relatively warm, dusty, perihelion season characterized by episodic dust storms, and a stable, cold, dust-free but cloudy aphelion season. During the aphelion season, the relatively large global water column and cool tropical temperatures imply a particularly low (< ~ 10 km) level of saturation. The ascending branch of the global Hadley cell in the northern tropics (0-30o NH) forms a prominent cloud belt that persists throughout the aphelion season from Ls≈ 60{o } and quickly decays at Ls≈ 145{o }. This season has been simulated by the GFDL Mars GCM which incorporates water ice microphysics, the radiative effects of dust and water ice clouds, and surface and subsurface sources and sinks of water. GCM simulations result in the formation of a tropical cloud system very similar to that observed by Mars Global Surveyor. The simulations suggest that dust may be confined to low altitudes in the NH due to water ice condensation on dust nuclei and the asymmetry of the Hadley cell. This, in turn, may lead to a stronger seasonal modulation of global temperature. We propose that the decrease in the water vapor supply to the tropics at Ls≈ 145{o } and the gradually increasing insolation leads to the disintegration of the tropical cloud system which may permit enhanced dust loading followed by a transition to the perihelion season climate. The transition between the two seasons may be accompanied by a short-term warming and slow (≈ 15-30 days) oscillations associated with the thermal feedback between the clouds and the Hadley circulation. The GCM simulations also suggest that the cloud system may contribute to the interhemispheric transport of water in the aphelion season despite the relatively low mass of the cloud system. This work is supported by grants from NASA's Planetary Atmospheres and JURRISS programs.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

GCM Simulations of Dust and Water Ice Clouds in the Mars Atmosphere does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with GCM Simulations of Dust and Water Ice Clouds in the Mars Atmosphere, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and GCM Simulations of Dust and Water Ice Clouds in the Mars Atmosphere will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-867639

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.