Physics – Plasma Physics
Scientific paper
Feb 1996
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1996jgr...101.2493g&link_type=abstract
Journal of Geophysical Research, Volume 101, Issue A2, p. 2493-2504
Physics
Plasma Physics
54
Interplanetary Physics: Plasma Waves And Turbulence, Interplanetary Physics: Solar Wind Plasma, Space Plasma Physics: Kinetic And Mhd Theory, Space Plasma Physics: Numerical Simulation Studies
Scientific paper
Solar wind frequency spectra show a distinct steepening of the f-5/3 power law inertial range spectrum at frequencies above the Doppler-shifted ion cyclotron frequency. This is commonly attributed to dissipation due to wave-particle interactions. We consider the extent to which this steepening can be described, using a magnetohydrodynamic formulation that includes the Hall term. An important characteristic of Hall MHD is that although the ion cyclotron resonance is included, there is no wave-particle dissipation of energy. In this study we use a compressible Hall MHD code with a constant magnetic field and a polytropic equation of state. Artificial dissipation in the form of a bi-Laplacian operator is used to suppress numerical instabilities, allowing for a clear separation of the dissipative scales from the ion cyclotron scales. A distinct steepening appears in the simulation power spectra near the cyclotron resonance for certain types of initial conditions. This steepening is associated with the appearance of right circularly polarized fluctuations at frequencies above the ion cyclotron resonance. Similar steepenings and polarization enhancements are observed in solar wind magnetic field data.
Ghosh Sabyasachi
Goldstein Michel L.
Roberts Daniel A.
Siregar Edouard
No associations
LandOfFree
Simulation of high-frequency solar wind power spectra using Hall magnetohydrodynamics does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Simulation of high-frequency solar wind power spectra using Hall magnetohydrodynamics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Simulation of high-frequency solar wind power spectra using Hall magnetohydrodynamics will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-854413