Astronomy and Astrophysics – Astronomy
Scientific paper
Sep 2000
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2000mnras.317..141r&link_type=abstract
Monthly Notices of the Royal Astronomical Society, Volume 317, Issue 1, pp. 141-150.
Astronomy and Astrophysics
Astronomy
27
Waves, Methods: Numerical, Stars: Oscillations
Scientific paper
A new eigenfrequency equation for low-degree solar-like oscillations in stars is developed, based on the assumption of purely classical propagation in the stellar interior of acoustic waves modified by buoyancy and gravity. Compared with high-frequency asymptotic analysis, the eigenfrequency equation has a new functional form, with expansion in powers of l(l+1) instead of 1/ω. Basic observable quantities, the `large' and `small' frequency separations, are interpreted as the dependence on frequency and refraction angle of a classical action integral for waves propagating close to the stellar diameter. The new eigenfrequency equation gives a significant improvement in accuracy over previous analyses when tested with solar p modes, suggesting this as an alternative and more powerful tool for applications in stellar seismology.
Roxburgh Ian W.
Vorontsov Sergei V.
No associations
LandOfFree
Semiclassical approximation for low-degree stellar p modes - I. The classical eigenfrequency equation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Semiclassical approximation for low-degree stellar p modes - I. The classical eigenfrequency equation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiclassical approximation for low-degree stellar p modes - I. The classical eigenfrequency equation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-762933